similar experiments at different temperatures suggest that stability of the high density lipoprotein against ether extraction is strongly temperature dependent.

Acknowledgments.-The authors wish to acknowledge helpful discussions with Drs. John W. Gofman and N. K. Freeman. BERKELEY, CALIFORNIA

COMMUNICATIONS TO THE EDITOR

Sir:

HEAT OF FORMATION OF NITROGEN TRIFLUORIDE AND THE N-F BOND ENERGY

Sir:

The heats of reaction (1) and (2) have been determined using calorimetric procedures customary in our laboratory, and reasonably concordant values for the heat of formation of NF₃ have been NF

$$F_3(g) + \frac{3}{2}H_2(g) = \frac{1}{2}N_2(g) + 3 \text{ HF}(aq, a = 1)$$
 (1)

$$NF_3(g) + 4NH_3(g) = 3NH_4F(c) + N_2(g)$$
 (2)

derived from the measurements.

For reaction (1) measured quantities of NF₃ and excess hydrogen over water were ignited in a bomb. No residual NF₃ was found in the products. ΔH^{0}_{25} for reaction (1) was determined by four experiments for which averages are shown in Table I as calculated on the basis of (a) NF₃ dosage and (b) HF titration. Uncertainties listed are standard deviations of the means.

Reaction (2), carried out by igniting a measured quantity of NF₃ mixed with excess ammonia, with no water, resulted in the formation of a crystalline deposit of NH₄F on the bomb walls. Eight experiments were performed. In Table I are shown values for ΔH^{0}_{25} calculated from (c) volume of NF₃, (d) weight of NF₃, (e) weight of NH₄F, (f) moles NH₃ determined by analysis of the NH₄F, and the mean of these weighted inversely as the squares of the standard deviations.

TABLE I

RESULTS OF	CALORIMETRIC	MEASUREMENTS
------------	--------------	--------------

	110000	TO OF CIRCIN		
	Reac- tion	Basis of calculation	$\Delta H^{0}{}_{2\delta}$ kj./mole	Δ <i>H</i> f ⁰ 25(NF3) kcal./mole
(a)	(1)	NF_3	-845.6 ± 1.7	
(b)	(1)	$\mathbf{H}\mathbf{h}$	-871.9 ± 0.6	
	(1)	Mean (= -205.3	-859.0 ± 13.4 $\pm 3.2 \text{ kcal}/\text{mole})$	-30.7 ± 3.4
(c)	(2)	NF3 volume	-1084.1 ± 7.1	
(d)	(2)	NF3 weight	-1081.1 ± 3.3	
(e)	(2)	NH₄F weight	-1087.0 ± 2.5	
(f)	(2)	NH ₃ titration	-1098.7 ± 8.4	
	(2)	Mean (= -259.5	-1085.7 ± 4.2 ± 1.0 kcal./mole)	-29.4 ± 2.1
	(1 and 2)	Mean		-29.7 ± 1.8

The heat of formation of NF₃ is calculated from the measurements on reaction (1) using ΔH^{0} -[HF(aq., a = 1)] = -78.66 kcal./mole.¹ It is calculated from the measurements on reaction (2) using $\Delta H_f[NH_3(g)] = -11.04 \text{ kcal./mole}^1$ and $\Delta H_{\rm f}[\rm NH_4F(c)] = -111.0 \ \rm kcal./mole.^2$ In the

(1) National Bureau of Standards Circular 500, 1952.

latter calculation, the principal uncertainty is in the heat of formation of NH4F, which we estimate to be ± 0.6 kcal./mole. The weighted average of the results gives $\Delta H_{f_{25}}[NF_3] = -29.7 \pm 1.8$ kcal./mole, and indicates that NF3 is slightly more stable than was found by Ruff and Wallauer.^{3,1}

With $E(F-F) = 37.7 \pm 1 \text{ kcal./mole}^4$ and E- $(N \equiv N) = 225.92 \pm 0.1 \text{ kcal./mole},^{5,1}$ the mean N-F bond energy E(N-F) in the NF₃ molecule is 66.4 ± 0.8 kcal./mole. Following Reese and Dibeler⁶ the dissociation energies of the individual bonds are estimated to be at 25° : $D(NF_2-F) = 74.0$; D(NF-F) = 62.6 D(N-F) = 62.6 kcal./mole.

(3) O. Ruff and H. Wallauer, Z. anorg. allgem. Chem., 196, 421 (1931).

(4) W. H. Evans, T. R. Munson and D. D. Wagman, J. Research. Nat. Bur. Standards, 55, 147 (1955).

(5) L. Brewer and A. W. Searcy, Ann. Rev. Phys. Chem., 7, 221 (1956).

(6) R. M. Reese and V. H. Dibeler, J. Chem. Phys., 24, 1175 (1956). GEORGE T. ARMSTRONG

NATIONAL BUREAU OF STANDARDS SIDNEY MARANTZ CHARLES F. COYLE WASHINGTON 25, D. C.

RECEIVED MAY 27, 1959

A MODEL FOR CELLULAR CATION DISCRIMINATION

The preferential uptake of potassium (or rubidium) ions from solutions containing 20-30 times more sodium than potassium by cells is a fundamental fact of biology. However, no cationic discrimination system has been isolated from cells nor does any known chelating agent or ion exchange resin exhibit this degree of preference for potassium over sodium.¹ This note describes results with orthoclase, a silicate feldspar (KAl- Si_3O_8) which shows properties of cationic selection, similar to that exhibited by living cells.

In the orthoclase lattice there is insufficient free space surrounding the potassium to accommodate a single water molecule in the structure.² When orthoclase particles³ (20-80 mesh) are incubated with Rb⁸⁶ or Na²² (added as the chloride) these cations are taken up from solution (esti-

(1) Cf. I. M. Glynn, Progress in Biophysics, 8, 241 (1957)

(2) C. E. Marshall, "Colloid Chemistry of the Silicate Minerals," Academic Press, New York, N. Y., 1949, pp. 23-25.

(3) Silicate minerals, obtained from Wards Natural Science Establishment, N. Y., included orthoclase var. Adularia (Brimfield, Mass.), microcline (Ontario), and leucite (Rome); samples were crushed, sieved, and washed with water, sthanol, and ether.

⁽²⁾ T. L. Higgins, "Dissertation Abstracts," 17, 1231 (1957).

mated by disappearance of radioactivity from medium) presumably as the resultant of an exchange reaction with potassium at certain sites of the external surface. Typical results obtained after 16–24 hours of rotary shaking at $22-25^{\circ}$ (at which time Rb uptake is near maximal) are shown in Table I. In the absence of a competing ion orthoclase prefers Rb to Na by a factor of about 4:1. However, Rb uptake is not significantly diminished by the presence of 10 times more Na (or Li) than Rb; similar Rb uptake values are obtained with Na:Rb mixtures at 30:1, but K in equimolar amounts inhibits Rb uptake. Na²² uptake cannot be detected in the presence of Rb.

TABLE	I
-------	---

2 g. orthoclase (20–80 mesh) incubated for 24 hr. with 2 ml. medium.

Medium	Con ce n., uM./ml.	Rb ⁸⁶ uptake uM. per 2 g.	Na²² uptake uM. per 2 g.
Rb ⁸⁶ Cl	2	2.06	
Na²²Cl	2		0.44
Rb ⁸⁶ Cl	2		
+ NaCl	20	2.00	
Na²²Cl	2		
+ RbCl	20		<0.1

Another feldspar, Microcline (KAlSi₃O₈), 20– 80 mesh, exhibits ion selectivity properties similar to orthoclase, but Rb uptake is only about onefifth that obtained with orthoclase; leucite (20–80 mesh) a feldspathoid, whose structure may be slightly more open than the feldspars,³ does *not* exhibit a preference for Rb as against Na.

The selective cation uptake by orthoclase emphasizes the importance of steric relationships for "fitting" cations into sites at the surface of this crystal lattice. Highly hydrated cations (Li and Na) may have difficulty in approaching and replacing potassium at these sites relative to K and Rb, which have fewer molecules of associated water.

Worcester Foundation for	Oscar Hechter
EXPERIMENTAL BIOLOGY	ALESSANDRO POLLERI
SHREWSBURY, MASS.	GABRIEL LESTER
DEPARTMENT OF CHEMISTRY	HARRY P. GREGOR
POLYTECHNIC INSTITUTE OF BROOKLY	'N
BROOKLYN NEW VORK	

RECEIVED MAY 22, 1959

SOLVENT CHARACTERISTICS OF TETRAMETHYLENE SULFONE

Sir:

Since sulfones should have moderately large dielectric constants and very small autoprotolysis constants, we have commenced a study of their characteristics as solvents for acid-base reactions. Tetramethylene sulfone (sulfolane)¹ was chosen because its melting point, reported to be 28.86°,² permits cryoscopy as a control upon other measurements. Some solvent characteristics, determined preliminary to a study of the acid-base aspects, are of unusual interest, particularly the very large cryoscopic constant (Table I). Sulfolane should

(1) We are indebted to the Shell Development Company for our sample of sulfolane. It could be purified adequately by vacuum distillation from powdered sodium hydroxide.

Table I	
---------	--

PHYSICAL PROPERTIES OF SULFOLANE

Dielectric constant (30°)	44
Density (30°)	1.2615 g./cc.
Viscosity (30°)	0.0987 poise
Heat of fusion (cryoscopic, 26°)	$2.73 \pm 0.03 \text{ cal./g.}$
Molal f.p. depression	66.2 ± 0.6 deg./mole

find application in molecular weight determinations.

Plots of freezing point vs. concentration exhibit a sharp inflection at 15° indicative of a new solid phase. Below 15° , slopes correspond to a heat of fusion of 10.6 cal./g. Calorimetric measurements are consistent with these values.³

Ideal monomer depressions were taken as those given by acetanilide and benzothiophene sulfone. Acetic acid behaves as a monomer and water as a dimer over the concentration range 0.01 to 0.1 molal. Methanol shows some association. Tetraethylammonium iodide is extensively dissociated.

Using a cell with bright platinum electrodes, conductivities of five salts were determined in the concentration range 3×10^{-4} to $5 \times 10^{-8} M$. The specific conductance of the solvent was less than 2×10^{-8} ohm⁻¹ cm.⁻¹ and always less than 1% of the conductivities of the solutions. As shown in Fig. 1, plots of $\Lambda vs. \sqrt{c}$ were linear. Tetraphenylarsonium chloride and phenyltrimeth-

Fig. 1.—Equivalent conductances of several salts in sulfolane, at 30° .

⁽²⁾ A. R. Birch and J. MacAllen, J. Chem. Soc., 2556 (1951).

⁽³⁾ We are indebted to Mr. R. M. Hammaker and Professor M. Dole for a heat capacity study from -20 to 35° on the adiabatic calorimeter described by A. E. Worthington, P. C. Marx and M. Dole, *Rev. Sci. Instr.*, **26**, 698 (1955).